Control of lower limb exoskeleton with simulated EMG signal
نویسنده
چکیده
منابع مشابه
A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton
BACKGROUND Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two diffe...
متن کاملGastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off
We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding th...
متن کاملAn Upper-Limb Power-Assist Exoskeleton Using Proportional Myoelectric Control
We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction proc...
متن کاملIntention detection based exoskeleton for gait neurorehabilitation
The prevalence of neurological diseases such as stroke, spinal cord injury and traumatic brain injury is increasing quickly in the industrialised societies. Although the benefit of the use of technology in rehabilitation and neurorehabilitation programs is proved, the presence of mechatronic systems is still very low. This paper proposes a new lower limb exoskeleton for gait rehabilitation in p...
متن کاملApplication of Surface Electromyographic Signals to Control Exoskeleton Robots
The electromyographic signals abbreviated as EMG, represent the amount of electrical potential generated by the muscle cells when they contract or when they are at rest. Basically, EMG signals can be classified into two types according to the place where they are extracted. The EMG signals detect from inside of the muscles are called as intramuscular EMG whereas EMG signals detect from skin sur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016